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Abstract
Inferring social relations from user trajectory data
is of great value in real-world applications such as
friend recommendation and ride-sharing. Most ex-
isting methods predict relationship based on a pair-
wise approach using some hand-crafted features or
rely on a simple skip-gram based model to learn
embeddings on graphs. Using hand-crafted fea-
tures often fails to capture the complex dynam-
ics in human social relations, while the graph em-
bedding based methods only use random walks
to propagate information and cannot incorporate
external semantic data provided. We propose a
novel model that utilizes Graph Convolutional Net-
works (GCNs) to learn user embeddings on the
User Mobility Heterogeneous Graph in an unsuper-
vised manner. This model is capable of propagat-
ing relation layer-wisely as well as combining both
the rich structural information in the heterogeneous
graph and predictive node features provided. Our
method can also be extended to a semi-supervised
setting if a part of the social network is available.
The evaluation on three real-world datasets demon-
strates that our method outperforms the state-of-
the-art approaches.

1 Introduction
The widespread popularity of location-based social networks
(LBSNs) such as Foursquare, location-based online services
such as Uber has brought us a tremendous volume of human
trajectory data. Understanding the underlying human mobil-
ity patterns proved to be of great value to various applications,
e.g., POI recommendation, next visit-location prediction. In
addition, social relations can be inferred from trajectory data
since there are certain correlations between the two [Eagle et
al., 2009]. An intuitive thought is that two users who fre-
quently meet are highly likely to be friends. Mining social
ties from human mobility data is of vital importance since it
provides us a new perspective on many real-world problems,
such as friend recommendation, link prediction and trans-
portation scheduling (e.g., ride-sharing).
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Extensive research has been conducted on the social rela-
tionship inference using human mobility data. However, most
existing works [Scellato et al., 2011; Pham et al., 2013; Pham
et al., 2016; Wang et al., 2014] rely on simple hand-crafted
features and predict pairwise relations individually, which
does not take account of relation propagation. They fail to
solve the data sparsity challenge of inactive users since almost
all pairwise based methods require that two users share com-
mon locations in order to make predictions. Recently, a num-
ber of graph embedding based methods [Backes et al., 2017;
Yu et al., 2018] have been proposed. They do not require
hand-crafted features which may not accurately characterize
various factors in human relations. However, instead of uti-
lizing more powerful embedding approaches, these methods
mainly use a simple skip-gram based model to learn node em-
beddings, which only computes the probability of a context
extracted from random walks, and external semantic infor-
mation cannot be well integrated. Besides, they are based on
either a user meeting graph or a user-location bipartite graph,
which may be combined to construct a heterogeneous graph
that contains richer information for better performance.

Graph Convolutional Networks (GCNs) are developed in
recent years [Defferrard et al., 2016; Kipf and Welling, 2017]
to enable convolutions on arbitrary structured graphs. The
ability of GCNs to propagate information layer-wisely allows
them to learn localized patterns at different scales, while the
skip-gram model only exploits nodes co-occur in a random
walk to minimize a carefully designed loss function. More-
over, GCNs can combine both the graph structure and exter-
nal node features provided to learn predictive embeddings.

Due to the aforementioned advantages of GCNs and the
rich information of a heterogeneous graph, we propose a
novel method for unsupervised social relationship inference
using human trajectories. Our method applies GCNs to learn
user embeddings on the User Mobility Heterogeneous Graph,
which incorporates user-user, user-location, location-location
relations. To provide meaningful features for the GCN as in-
put, inspired by [Gao et al., 2017], we use a skip-gram based
model to train location embeddings as features for location
nodes, and trajectory embeddings as features for user nodes
are extracted by training a RNN model to classify which user
a trajectory belongs to. In addition, if a portion of the corre-
sponding social network is known in advance, our model can
also encompass it to obtain better performance.
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The major contributions of our work are three-fold:

1. To the best of our knowledge, this is the first model to in-
fer social relations from human mobility data by mining
a heterogeneous graph, which consists of user-user meet-
ing graph, social graph, user-location bipartite graph and
location-location co-occurrence graph.

2. We propose GCNs on heterogeneous graphs to integrate
external semantic information (node features) and graph
structure for user embedding learning in both unsuper-
vised and semi-supervised way.

3. We conduct extensive experiments on three real-world
datasets and obtain better performance than all compared
baselines in the unsupervised setting, while the evalua-
tion in the semi-supervised setting shows our model can
achieve a tremendous performance boost given only a
small portion of the ground truth social network.

2 Related Works
Graph convolutional networks. In recent years, great ef-
forts have been made to extend traditional convolutional neu-
ral networks (CNNs) which operate on Euclidean structures
to arbitrary graphs. Bruna et al. [2014] first proposed the
convolution operation on graphs based on spectral graph the-
ory, which is extended in [Defferrard et al., 2016] through
using Chebyshev polynomials to approximate filters. Kipf
and Welling [2017] further applied the first-order approxima-
tion to develop a layer-wise linear model, which can be used
in fast and scalable semi-supervised node classification. This
architecture is extended to operate on knowledge graphs in
[Schlichtkrull et al., 2018]. An unsupervised inductive em-
bedding learning framework is first introduced in [Hamilton
et al., 2017], but is limited to homogeneous graphs.

Mobility relationship inference. There are a number of
studies in using mobility data to infer social relations. Ea-
gle et al. [2009] made the first attempt to discover the cor-
relations between meeting events and social ties by using
mobile phone data. Scellato et al. [2011] considered it as
a link prediction problem and proposed a supervised learn-
ing framework which uses hand-crafted features to predict
missing links. Pham et al. [2013] proposed an entropy-
based model (EBM) that takes the diversity of meeting events
and location entropy into consideration, which is further ex-
tended in [Pham et al., 2016] to incorporate location seman-
tics. Wang et al. [2014] developed a unified framework that
considers personal, global, and temporal factors. All methods
above make predictions for each pair individually. Backes et
al. [2017] first proposed a graph embedding based method
on the user-location bipartite graph. Yu et al. [2018] were
inspired by this mechanism and applied graph embedding on
user meeting graph. Graph embedding is also used on the
social network to predict missing links in [Zhou et al., 2018].

3 Graph Convolutional Networks for User
Mobility Heterogeneous Graph

In this section, we elaborate our proposed method. First, we
introduce the User Mobility Heterogeneous Graph. Second,
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Figure 1: The User Mobility Heterogeneous Graph.

we present our GCN framework that operates on heteroge-
neous graphs to learn node representations unsupervisedly
as well as the node features we feed to the GCN. Finally,
we demonstrate that our method can also be used in a semi-
supervised way by incorporating partial social networks. The
workflow of our proposed method is illustrated in Figure 2.

3.1 Constructing User Mobility Heterogeneous
Graph

In order to characterize user’s mobility profile and model re-
lation propagation, we propose the User Mobility Hetero-
geneous Graph to incorporate various kinds of information
that represent relations between user-user, user-location and
location-location. The User Mobility Heterogeneous Graph
can be divided into: user layer, location layer, and user-
location interaction layer. We give an illustration in Figure
1.

Edges in the user layer connect user nodes. Each edge ei,j
represents the mobility relationship between user i and user
j and its weight is defined by the meeting frequency between
the two users. In the semi-supervised setting, we also con-
nect an unweighted edge (as a second kind of relation in the
user layer) for each social pair in the given partial social net-
work. In user-location interaction layer, we connect an edge
eu,l from a user u to each of his check-in location l. The
weight of the edge is the number of check-ins in this partic-
ular location (visiting frequency). For each edge ep,q in the
location layer, we connect the two locations p and q that co-
occur most frequently in raw user trajectories and the weight
is given by the frequency of co-occurrences (i.e., the number
of times p and q appear consecutively in the trajectories of all
users). Intuitively, a path along the edges in the location layer
represents a popular travel sequence.

3.2 Unsupervised Node Representation Learning
We extend the R-GCN framework [Schlichtkrull et al., 2018],
which is aimed for semi-supervised entity classification and
being used as an entity encoder for existing link prediction
models on knowledge graphs, to unsupervised node represen-
tation learning on heterogeneous graphs.

R-GCNs use the following propagation rule expressed in
the message-passing architecture [Gilmer et al., 2017] that
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Figure 2: Workflow of our proposed method. Raw user trajectories are first extracted to construct the User Mobility Heterogeneous Graph.
Meanwhile, sub-trajectories are sampled to learn location embeddings using a skip-gram based model, and trajectory embedding is formed
by averaging the final hidden state of a RNN model over all sampled sub-trajectories of the user. The RNN model is trained in a supervised
way under the Trajectory-User Linking problem. The location and trajectory embeddings are feed to the GCN as input node features.

aggregates information from a node’s local neighbors and for-
ward the aggregated information to the next layer.

h
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where N r
i denotes the neighbors of node i under the relation

r ∈ R, and ci,r is just a normalization constant. σ denotes an
activation funciton. h(l)i is the hidden state of i-th node at the
l-th layer. It assigns a different weightW (l)

r for each different
relation r ∈ R and a self-connection is added. This layer-
wise propagation model can be implemented in sparse-dense
matrix multiplications and has a computational complexity
linear in the number of edges.

There are three types of relations in our User Mobility Het-
erogeneous Graph: user-user meeting, user-location visiting
and location-location co-occurrence (ground truth social pairs
are not available in the unsupervised setting). All these rela-
tions must be explicitly modeled and have separate weights.
We can express the propagation rule in the matrix form:

H(l+1) = σ(D̃
− 1

2

UU ÃUU D̃
− 1

2

UUH
(l)W

(l)
UU

+ D̃
− 1

2

LL ÃLLD̃
− 1

2

LLH
(l)W

(l)
LL

+D
− 1

2

ULAULD
− 1

2

ULH
(l)W

(l)
UL) (2)

where ÃUU = AUU +I is the adjacency matrix of the hetero-
geneous graph contains only user-user edges with added self-
connections (in the user nodes), D̃UU is corresponding degree
matrix andW (l)

UU is the weight matrix for user-user relation in
l-th layer. ÃLL, D̃LL,W

(l)
LL is defined in the same way for

location-location relation. For AUL, DUL,W
(l)
UL that regard

to user-location relation, we do not add self-connections in
the adjacency matrix since it is a bipartite relation between
two different kinds of nodes. All these adjacency matrices

have the same dimension: (#users + #locations, #users + #lo-
cations). H(l) is the activations in the l-th layer and H(0) is
the input node features. σ symbolizes an activation function
(here we use ReLu activation).

Inspired by the heterogeneous skip-gram model [Dong et
al., 2017], we introduce a loss function designed to learn node
embeddings in a fully unsupervised manner. We encourage
neighbor nodes to have similar representations while distant
nodes have distinct ones. The loss for a single node u is:

Lunsup(u) = − log(σ(Φ>u Φv))− λheter log(σ(Φ>u Φw))

− λneg

∑
z∈NEG(u)

log(−Φ>u Φz) (3)

Φ(u) here denotes the output embedding for node u, σ is the
sigmoid function. v represents a homogeneous node (i.e., if
u is an user node, then v is also an user node) in the local
context of node u, and w represents a heterogeneous node in
this local context. v and w may be chosen from nodes near
u in a random walk. NEG(u) here is the negative sampling
set of node u which contains nodes not in the local context
of u. λheter and λneg control the weights of the heterogeneous
context loss and the negative sampling loss, respectively. The
loss of the entire graph is averaged over all nodes.

3.3 Extracting Node Features from Trajectories
Since GCNs leverage node features to learn node represen-
tations, we shall provide useful, predictive user and location
embeddings as input. We adapt the method in [Gao et al.,
2017] to learn embeddings for users and locations.

First we divide each user’s trajectory into a series of sub-
trajectories. After the splitting, location embeddings are
learned using a skip-gram based model: for a given location
l, we learn its embedding Ψl by maximizing the probability
of predicting its context C(l, T ) (nodes co-occurs with l in
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the trajectory T where l lies):

max
∏

l′∈C(l,T )

exp(ΨlΨl′)∑
l′′∈C(l,T ) exp(ΨlΨl′′)

(4)

After embeddings are learned for each location, the sub-
trajectories after location embedding are then feed into a
RNN with GRU cells. To train the network in a supervised
manner, the final hidden state then goes through a FC layer
with softmax to link the sub-trajectories to their users. The
final hidden state of the RNN is used as sub-trajectory em-
bedding. A user’s embedding is given by averaging the em-
beddings of all sampled sub-trajectories of that user.

3.4 Semi-supervised Node Representation
Learning

We can further improve the performance of our method if a
portion of friend pairs from the social network is known. In
this scenario, we use two ways to augment our model. First,
we incorporate the neighbor information of nodes as local
contexts into the loss function. We compute the following
semi-supervised loss term Lsemi = − log(Φ>u Φz), where z is
a neighbor of node u in the social network. The final loss
function in the semi-supervised setting is defined as follows:

L = Lunsup + λsemiLsemi (5)

where λsemi is used to control the contribution of the semi-
supervised loss to the overall loss.

Second, we treat the partial social network as a new kind
of user-user relation (as described in Section 3.1) and use a
separate weight matrix for it in the convolution. Concretely,
we add the term D̃

− 1
2

S ÃSD̃
− 1

2

S to Equation (2), where ÃS , D̃S

are the adjacency matrix and the degree matrix of the known
partial social network with self-connections on user nodes.

4 Experiments
4.1 Experiment Setup
Datasets
We have conducted extensive experiments on three publicly
available real-world datasets: Gowalla, Brightkite [Cho et
al., 2011] and Foursquare [Yang et al., 2019], which contain
user check-in records and social relations from three LBSNs.
As in previous works [Yu et al., 2018; Backes et al., 2017;
Zhou et al., 2018], we focus on a specific city for each dataset.
User check-ins within the selected cities are extracted by us-
ing a geographic bounding box. For each dataset, we ob-
tain the ground truth friendship in social networks as posi-
tive instances. Then we substitute one of the users in every
friend pair with a random non-friend user to build negative
instances. Table 1 shows the statistics of the datasets.

For unsupervised learning, we split the friendship data into
20% validation set and 80% test set. For semi-supervised
learning, we first divide the data into two parts: a 30% semi-
supervised sampling set and a remaining part composed of
the rest 70% data, which is further split into 10% validation
set and 90% test set.

Gowalla Brightkite Foursquare

City Austin Chicago New York

#locations 18,382 9,239 43,226

#users 7,844 2,273 9,083

#check-ins 332,742 57,710 283,458

#friends 37,978 4,596 14,187

Table 1: Dataset statistics.

Metrics
Each method learns a vector representation for each user; the
pairwise cosine similarity of the embedding vectors are then
computed to generate a score that indicates the probability of
two users being friends. We use Area Under the ROC Curve
(ROCAUC) to measure the performance of different methods
in both unsupervised setting and semi-supervised setting.

Training Configuration
We use 256-dimensional vectors for both location and trajec-
tory embeddings. After embeddings are learned, we use zero
padding to form 512-d vectors as GCN input features, where
the first 256-dims are for users and the last 256-dims are for
locations. Location pairs with a co-occurring frequency ≥ 2
are added to the location layer of the heterogeneous graph.

We follow the two-layer GCN setup in [Kipf and Welling,
2017]. For both unsupervised and semi-supervised settings,
we optimize hyperparameters on the validation set. The
settings after hyperparameter tuning are reported. We use
an output embedding dimension of 128, and the number of
units in the hidden layer is set to 256. We use Adam op-
timizer with a learning rate of 0.0001. L2 regularization
is used for the first GCN layer with a weight decay coeffi-
cient of 5 · 10−4. The number of negative samples is set
to 20 and the weight of the negative sampling loss λneg is
set to 1.0. Dropout is not used. The weight of the hetero-
geneous context loss λheter in the unsupervised setting for
Gowalla, Brightkite and Foursquare is 0.9, 0.1, 0.3, respec-
tively. For semi-supervised learning on Gowalla, Brightkite
and Foursquare, the weight is 0.1, 1.0 and 0.4. The weight of
the semi-supervised loss λsemi is set to 2.0 for Gowalla, 5.0
for Brightkite and 2.0 for Foursquare. We train a maximum
of 5000 epochs in each case. Our source code is available at
https://github.com/libertyeagle/gcn mobility relationship.

Baselines
In the unsupervised setting, we compare our method with five
state-of-the-art methods. All compared methods also use an
embedding dimension of 128. We also compare the perfor-
mance of raw features used in the GCN to investigate the role
they play. Our method is denoted as Heter-GCN.

• DeepWalk: It performs random walks on graphs and uses
the skip-gram model to learn node embeddings. Since
it is designed for homogeneous graphs, we apply Deep-
Walk on the user layer of the User Mobility Heterogeneous
Graph. [Perozzi et al., 2014].

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3901



Gowalla Brightkite Foursquare

DeepWalk 0.6340 0.5364 0.5516

LINE 0.6268 0.5372 0.5565

emb 0.6280 0.5397 0.5475

walk2friends 0.6824 0.5287 0.5956

metapath2vec 0.6571 0.5547 0.6115

Raw features 0.5532 0.5565 0.6198

Heter-GCN 0.7280 0.5762 0.6445

Table 2: Performance comparison for unsupervised learning.

• LINE: LINE is a network embedding method designed to
preserve the first-order and second-order proximity. We
also apply LINE on the user graph. [Tang et al., 2015].

• emb: emb applies skip-gram based model on user graph to
learn embeddings. To better utilize edge weights, hierar-
chical sampling is proposed. [Yu et al., 2018].

• walk2friends: walk2friends applies a skip-gram based
graph embedding model to learn user embeddings on
the user-location bipartite graph for social link infer-
ence. [Backes et al., 2017].

• metapath2vec: This is a state-of-the-art representation
learning model for heterogeneous networks which utilizes
meta-path based random walks and heterogeneous skip-
gram model to learn node embeddings. [Dong et al., 2017].

• Raw features: This approach only uses user embeddings
and location embeddings, which are fed into the Heter-
GCN as input node features.

4.2 Findings and Analysis in Unsupervised Setting
Findings - Our Method Outperforms All Baselines
The results obtained on the three datasets in the unsupervised
setting are reported in Table 2. We find out that our method
performs significantly better than other approaches on all of
the three datasets, since our method not only uses external
node features but also exploits the heterogeneous graph struc-
ture to capture multidimensional relations. The convolutional
nature of GCN allows the model to extract the local station-
ary structures and propagate information at different scales,
which also contributes to the performance gain.

Besides, using raw features alone already makes an ade-
quate classifier. But the User Mobility Heterogeneous Graph
contains rich structural information of relations which can-
not simply be ignored, only through GCN’s combination of
both semantic and structural information attains the best per-
formance. We notice that raw features perform relatively
worse on Gowalla. That is because the graph constructed
on Gowalla is far denser than the other two datasets, the
graph-based methods can perform well using rich informa-
tion the graph provides. Concretely, there are 26,226 nodes
and 516,842 edges (272,839 user-user edges) in the het-
erogeneous graph on Gowalla. While on Brightkite, there
are 11,512 nodes and 16,760 edges (1,156 user-user edges).
On Foursquare, there are 52,309 nodes and 194,529 edges
(13,937 user-user edges).

We observe that walk2friends achieves great performance
on Gowalla and Foursquare, because it characterizes user mo-
bility profiles by learning embeddings on the user-location
bipartite graph. However, walk2friends performs the worst
on Brightkite. This is most likely caused by the sparsity of
check-in data on Brightkite.

On Brightkite, emb performs slightly better than Deep-
Walk and LINE since it uses hierarchical sampling to en-
hance the contributions of edges with larger weights in user
graph. Yu et al. [2018] suppose that edges with larger weights
indicate strong relations, while low-weight edges are more
likely noisy, though this is not always the case. For instance,
two individuals who work in the same office building may
frequently meet, but they may not necessarily be friends.
This leads to its relatively poor performance on Gowalla and
Foursquare. Yu et al. [2018] mitigate this problem by con-
sidering POI’s categorical information to weight meeting fre-
quency. Nevertheless, POI information is not easy to obtain;
therefore this method is not generally applicable.

Not surprisingly, metapath2vec demonstrates decent per-
formance on all three datasets, indicates that the User Mobil-
ity Heterogeneous Graph which combines relational informa-
tion both within as well as between users and locations does
help improve the overall performance. Still, because it does
not explicitly model different kinds of relations, but only rely
on the heterogeneous skip-gram loss function to learn net-
work embeddings, its performance is worse than Heter-GCN.

Findings - Our Method Also Shows Superiority in
Relationship Propagation
As suggested in [Yu et al., 2018], taking account of relation-
ship propagation is an indispensable factor in making precise
predictions. For instance, user A and B have a strong social
relation, so does user B and C. Then we can infer that user
A and C may also have a strong relation even if we have not
directly observed any meeting events between them. From
Table 3 we can observe that the majority of friend pairs in all
three datasets have a meeting frequency less than 2. Hence
we must handle these low-frequency friend pairs properly to
achieve high performance. Using meeting frequency alone is
not able to identify these pairs, since low meeting frequency
indicates that the two users are unlikely to be friends. For ex-
ample, in Gowalla, among all user pairs who have zero meet-
ing frequency, only 0.10% of them are friends; the percent-
age increases to 1.61% for user pairs with one meeting and
2.90% with two meetings. For pairs with more than 10 meet-
ings, 56.47% of them are friends. Only through modeling
relationship propagation, we can solve this issue.

Hence we compare the performance of our approach with
one of the best performing user graph based embedding
method: emb, in order to demonstrate the GCN framework’s
superiority in layer-wise relation propagation. Since our
method also takes advantage of node features and utilizes
user-location interactions in the heterogeneous graph which
enables relationship propagation between users and locations,
we also add walk2friends and raw features to our compari-
son. Figure 3 shows the results. Here we use Area Under
the Precision-Recall Curve (PRAUC) instead of ROCAUC
because precision-recall curves are better in evaluating per-
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Figure 3: Performance of different methods on user pairs whose meeting frequency is lower than certain threshold.
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Figure 4: Performance of our method in the semi-supervised setting. 0% social pairs refers to the unsupervised model.

Gowalla Brightkite Foursquare

#friends 37,978 4,596 14,187

#meeting = 0 82.26% 97.33% 96.67%

#meeting = 1 8.85% 1.16% 1.92%

#meeting = 2 3.25% 0.57% 0.61%

#meeting > 2 5.64% 0.94% 0.80%

Table 3: Friendship statistics under different meeting frequency. The
percentages here are relative to #friends of the dataset in the first row.

formance with class imbalance, while ROC curves can be de-
ceptive in this circumstance [Davis and Goadrich, 2006].

We observe from Figure 3 that our method yields substan-
tially better performance than other methods. It is apparent
that our method can better model relationship propagation,
owing to the convolutional property of GCN. In addition, as-
similating user-location interactions into the graph structure
and exploiting the semantic information that input node fea-
tures encompass also contributes to the performance gap.

4.3 Finding and Analysis in Semi-supervised
Setting

Finding - Our Method Achieves a Huge Performance
Boost given Only a Small Portion of the Social Network
We assume that only a small portion of edges in the social
network are available as ground truth. We randomly sample
10% to 100% edges from the 30% semi-supervised sample
set we split to construct the partial social network, then feed
it to GCN for semi-supervised learning. As stated in Section
4.1, the evaluation is performed on the split test set which
does not include the sampled edges. To show the effective-

ness of treating the partial social network as a new kind of
relation in the , we also evaluate the performance of semi-
supervised learning using only ground truth neighbor infor-
mation in skip-gram loss, namely Semi-sup. w/o GS. The
method which also utilizes the structure of the partial social
network is designated as Semi-sup. w/ GS. The results on the
three datasets are presented in Figure 4.

We discover that we obtain much better performance com-
pared to the unsupervised training by using only a small por-
tion of ground truth social pairs. Though the performance of
Semi-sup. w/o GS drops a bit compared to the unsupervised
model on Brightkite and Foursquare when using 10% social
pairs in the sample set (which is only 3% in the complete so-
cial network), this is probably because we fail to capture the
global structure of the social network given limited data ob-
served. Still, as the number of social pairs used in training
increases, so does the performance leap. Moreover, by exam-
ining the results of Semi-sup. w/o GS and Semi-sup. w/ GS,
we find that letting GCN learn from the structure of the partial
social network rather than rely only on neighbor information
it provides, further performance improvements are realized.

5 Conclusion
In this paper, we developed GCNs on User Mobility Hetero-
geneous Graphs for social relationship inference from human
trajectories. Extensive experiments on three datasets demon-
strate the effectiveness of our method in both unsupervised
and semi-supervised settings.
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